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1 Introduction

The aim of this paper is to identify the key factors that play a role in the university admit-

tance process. In predicting the chance of admittance into university, it is crucial to under-

stand the relative importance of each measure. Although different measures are designed to

assess a student’s abilities, it remains unclear to what extent each measure independently

contributes to the overall decision of admittance. Traditional modelling approaches often

focus on identifying one single best-fitting model, assuming that the single set of predic-

tors can fully capture the complex relationship between the predetermined variables and

outcome.

Bayesian Model Averaging (BMA), however, offers a more flexible framework and ac-

knowledges that there may be multiple plausible models, each with its own set of predictors

and estimates. Rather than selecting a single model, BMA considers a weighted average

across a range of models, thus incorporating uncertainties of the underlying model structure

into the analysis. This approach allows for a more nuanced understanding of the factors

that influence the chances of admittance, using an existing dataset.

In addition to exploring the comprehensive model selection provided by BMA, this pa-

per aims to further investigate a more parsimonious model using the best three predictors

identified through BMA. Through the application of a subset of predictors, an optimized

model can be acquired which captures the essence of the underlying relationships of the

metrics. The selection of the three predictors are based on the posterior inclusion probabil-

ities (PIP). These probabilities indicate the likelihood of each predictor being included in

the model. The construction of a parsimonious model offers a simplified representation of

the admittance process without sacrificing predictive accuracy.

2 Dataset

The data used in this article is a public data set called ”Data for admission in the university”

by Akshay Dattatray Khare on Kaggle [1]. It consists of 400 responses to several variables,

including Graduate Record Examination (GRE) scores (out of 340), Test of English as a

Foreign Language (TOEFL) scores (out of 120), University Rating (out of 5), statement of

purpose strength (out of 5), letter of recommendation strength, undergraduate GPA (out of

10), research experience (either 0 or 1), and the chance of admittance (ranging from 0 to 1).

There is no missng data and alll continuous variables are normally distributed. To help the

interpretation of comparing the importance of factors, all predictor will be standardized.

3 Analysis

3.1 Bayesian Model Averaging

For the BMA we will adopt a comprehensive approach by considering all possible subsets of

predictor variables in our model space. This implies there is no pre-specification of models

used during the analysis. First the Bayesian correlation between variables is calculated

to look into the existing relationships of the data. To maintain a non-informative stance

that might influence the relative importance of the predictors of university admittance, we
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will choose an uninformative prior (β(1, 1)) for model weights. This prior assigns equal

prior weight to all possible models. We will then use Markov chain Monte Carlo (MCMC)

methods to estimate the posterior model probabilities and produce weighted predictions

using R [2] packages BAS and BayesFactor. The function will run 10,000,000 iterations to

ensure convergence of the MCMC chains. We discard a burn-in period of 100,000 iterations

to discard early transient behaviour, and then use the remaining samples to estimate the

posterior probabilities of model inclusion and other relevant quantities of interest. Once we

obtain the posterior probabilities of model inclusion, the weighted average predictions can be

computed by combining the predictions from each model, using their respective probabilities

as weights. The importance of variables is determined by the PIPs.

3.2 Parsimonious model

3.2.1 Model Specification

The three predictors with the highest PIP are chosen for the parsimonious analysis. To cal-

culate the Bayesian Regression Analysis we will use MCMC methods using Gibbs sampling,

since the joint posterior distribution can be factorized into conditional distributions. Each

parameter is then sampled from its own conditional distribution given the values of the other

parameters. The regression parameters β0, β1, β2, β3, β4, and the precision τ are estimated

using non-informative conjugate priors. For β0 − β4 a normal distribution with µ = 0 and

σ = 0.001 were used. For the prior variance of the outcome variable Y a gamma distribution

with α = 0.001 and β = 0.001 was used. Theorem 3.1 for the conditional distributions can

be derived using these priors.

For the MCMC sampler, three chains with different starting values are set-up to probe

the parameter space of the condtional distributions. The sampler applies a burn-in period

of 10,000 iterations, allowing the chains to converge to the parameter estimates. After the

burn-in, an additional 90,000 samples are collected from the posterior distribution for each

parameter of interest. This iterative process produces reliable estimates of the regression

parameters using the Gibbs sampling framework with conjugate priors.

Theorem 3.1.

Yi = b0 + b1x1i + b2x2i + b3x3i + ei with ei i.i.d. ∼ N(0, 1/τ) and priors

b0...b3 ∼ N(0, 1/τb)

τ ∼ gamma(α, β)

which result in the conditional distributions

f(b0|b1, b2, b3, τ, Y1, ..., Yn) ∼ N( τ
nτ+τb

∑n
i=1(Yi − (b1x1i + b2x2i + b3x3i),

1
nτ+τb

)

f(b1|b0, b2, b3, τ, Y1, ..., Yn) ∼ N(
τ
∑n

i=1(Yi−(b0+b2x2i+b3x3i)x1i)

τ
∑n

i=1(x
2
i+τ)

, 1
τ
∑n

i=1 x
2
1i+τb

)

...

f(τ |b0, b1, b2, b3, Y1, ..., Yn) ∼ gamma(α+ n/2, β + 1
2

∑n
i=1(Yi − (b0 + b1x1i + b2x2i +

b3x3i)
2))
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3.2.2 Convergence

Figure 1: Trace plots and posterior distributions of the stan-
dardized 3 predictor model

To obtain proper esti-

mates it is important

for the Gibbs Sampler

to converge, since non-

convergence will lead to

poor and biased param-

eters. This is checked

using several methods:

trace plots, autocorrela-

tion plots, Gelman Rubin

Statistics and MCMC er-

ror. Trace plots and

autocorrelation plots are

generated to visualize the

convergence and mixing

properties of the MCMC

sampler for each model

parameter. The Gelman-

Rubin Statistic is com-

puted to measure convergence by comparing between-chain variance to within-chain vari-

ance. MCMC error is calculated to check if it is less than 5% of the parameter’s standard

deviation, ensuring reliable estimates. These diagnostic measures assess the performance of

the analysis, and verify the parameter estimates in the Bayesian analysis.

In Figure 1 the sampled values of the parameters visualize convergence to a common

region and do not exhibit extreme fluctuations. It also doesn’t appear to get stuck in a

local spot. A rapid decay of autocorrelation is observed Figure 2, indicating the decrease

of correlation between consecutive samples. This indicates that the chains are efficiently

exploring the parameter space. We also find that the Gelman-Rubin Statistics are 0.999,

0.999, 1.000, 1.000, 1.00, 0.999 for beta0− τ , respectively., indicating convergence. Finally,

the MCMC error for each parameter is compute and is well below the threshold of 5% for

all parameters, suggesting that the parameter estimates are stable and accurate.

Figure 2: Autocorrelation plots of the standardized 3 predictor model
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3.3 Results

3.3.1 Bayesian Model Averaging

Bayesian correlation coefficients are estimated between the predictor variables and response

variable. The results indicate a positive correlation with GRE score (95% CI = .80 - .86),

TOEFL Score (r = .79, 95% CI = .75 - .83), University Rating (r = .71, 95% CI = .66 -

.75), Statement of Purpose (r = .67, 95% CI = .62 - .73), Letter of Recommendation (r =

.67, 95% CI = .61 - .72), undergraduate GPA (r = .87, 95% CI = .85 - .90, and Research

Experience (r = .55, 95% CI = .49 - .62). These results indicate our data set can be used

to investigate our research question.

The PIPs suggest that CGPA (PIP = 1.000, β = 0.123) and Letter of Recommendation

(PIP = .999, β = .023) have the highest probabilities of being included in the predictive

modelm, because they display strong evidence of their association with the response variable.

GRE score and Research experience also shows a high PIP (PIP = .919, β = .002 and PIP =

.910, β = .022, respectively), indicating potential contribution to the model. TOEFL score

also has a relative high PIP (PIP = .836, β = .003) and should be taken into consideration

as an important factor. University rating and Statement of Purpose have lower PIPs (PIP

= .244, β = .001 and PIP = .163, β = .000, respectively), indicating weaker evidence. The

flexibility of BMA shows an insight into influential predictors that can guide future research

and inform predictive modeling efforts. It is important to note the inherent uncertainty

associated with the estimates and the need for validation in independent datasets.

3.3.2 Parsimonious model

The three highest PIP’s are used in the parsimonious model: undergraduate GPA, Letter

of Recommendation, and GRE score. Parameter estimates and credible intervals using the

Gibbs sampling are calculated and are displayed in Table 1. The largest parameter estimate

is CGPA (beta = 0.135, CI = 0.118-0.153), then LOR (beta = 0.024, CI = 0.015-0.034),

and finally GRE (beta = 0.003, CI = 0.002-0.004). The credible intervals in the tables

represent the 95% range of my belief what the regression coefficients, given both on the

data and uniformative priors. The regression coefficients are standardized, meaning the

magnitude of the coefficient is comparable. This means there is evidence that key factor for

University Admittance is undergraduate GPA in the simplified model. Furthermore, we see

that the CI for undergraduate GPA does not overlap with the CI for GRE score or Letter

of Recommendation, indicating that it is clearly the most important factor for a succesful

application. Next to overall better scores, this be an important conclusion for students

seeking for better approval rates: The entire undergraduate program and according grades

play an important role in eventual application.

Table 1: Summary of the Sampled Parameter Values in the Parsimonious Model.

Parameter Mean SD Naive SE 2.5% Median 97.5%
intercept 0.7243 0.0033 0.0000 0.7180 0.7243 0.7307
CGPA 0.0806 0.0066 0.0000 0.0677 0.0806 0.0935
LOR 0.0220 0.0044 0.0000 0.0134 0.0220 0.0306
GRE 0.0351 0.0059 0.0000 0.0235 0.0351 0.0466
tau 236.7546 16.8571 0.0324 204.9397 236.3438 270.8541
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4 Proof

4.1 Synthetic data

As a proof of concept for the BMA and Gibbs sampler we created two synthetic data sets of

10,000 observations of 6 variables which can represent different aspects or measurements. In

the first data set the outcome variable is perfectly predicted by all predictors. The Directed

Acyclic Graph (DAG) in figure 3b illustrates the relationships of these generated variables.

We can see that variable F is perfectly predicted by all other variables. In the second data

set there are no true relations. This is shown in the DAG in figure 3a, where the absence

of arrows signifies the lack of direct relationships. In both data sets the truth about the

relationships is known, thus the effectiveness of the research methods can be analysed. The

descriptive statistics are shown in table 2 and show similar characteristics.

(a) unrelated (b) related

Figure 3: Directed Acyclic Graph for synthetic data

Table 2: Descriptive Statistics of the synthetic data

Dataset related Dataset unrelated
Mean SD Min Max Mean SD Min Max

A 6.01 2.46 -3.11 15.20 6.01 2.49 -4.01 14.85
B 30.05 10.05 -6.26 70.00 30.14 10.06 14.81 70.07
C 99.94 14.99 45.98 155.50 99.98 15.04 45.17 155.37
D 60.04 14.94 4.44 117.75 60.03 15.00 3.18 116.33
E 1.00 0.20 0.31 1.71 1.00 0.20 0.23 1.79
F 49.84 22.02 -39.61 133.17 50.04 22.19 -55.95 139.53

4.2 Bayesian Model Averaging

To show BMA works properly, it needs to give the same conclusion as the true relationships

in the generated data: PIPs need to be 1 in the related model and 0 in the unrelated model.

To compute PIPs, the marginal posterior distribution of each parameter is normalized and

divided by the sum of the marginal posterior distributions across all parameters. The PIPs
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represent the probabilities of each parameter being included in the true model, given the

data and the model set. An uninformative prior (β(1, 1)) is chosen for model weights and

assigns equal prior weight to all possible models. The parameter PIPs are then calculated

using the R package BAS and show the right PIPs in the unrelated and related dataset (PIPs

= 0 and PIPs = 1, respectively). The weighted average is now the value that was used in

the data generating mechanism; i.e. the true value.

4.3 MCMC Sampler

(a) unrelated

(b) related

Figure 4: Convergence of synthetic data

To show that the Gibbs sampling

algorithm is working correctly

for the derivation of the condi-

tional posterior distributions, it

needs to converge to the true val-

ues in the data set. To esti-

mate the parameters we set pri-

ors β0−β4 to a normal distribu-

tion with µ = 0 and σ = 0.001.

For the variance of Y a gamma

distribution with α = 0.001 and

β = 0.001 is used. The trace

plots show intermixing of chains,

autocorrelation plots are accept-

able, Gelman-Rubin Statistics

are all close to 1 and MCMC er-

ror are also in order, thus giving

no proof for non-convergence.

Figure 4 shows that the esti-

mates approach the true val-

ues and can thus conclude the

MCMC sampler is working cor-

rectly.
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